Nondestructive Detection of Sunflower Seed Vigor and Moisture Content Based on Hyperspectral Imaging and Chemometrics

Author:

Huang Peng1,Yuan Jinfu1ORCID,Yang Pan1,Xiao Futong1,Zhao Yongpeng1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya’an 625014, China

Abstract

Sunflower is an important crop, and the vitality and moisture content of sunflower seeds have an important influence on the sunflower’s planting and yield. By employing hyperspectral technology, the spectral characteristics of sunflower seeds within the wavelength range of 384–1034 nm were carefully analyzed with the aim of achieving effective prediction of seed vitality and moisture content. Firstly, the original hyperspectral data were subjected to preprocessing techniques such as Savitzky–Golay smoothing, standard normal variable correction (SNV), and multiplicative scatter correction (MSC) to effectively reduce noise interference, ensuring the accuracy and reliability of the data. Subsequently, principal component analysis (PCA), extreme gradient boosting (XGBoost), and stacked autoencoders (SAE) were utilized to extract key feature bands, enhancing the interpretability and predictive performance of the data. During the modeling phase, random forests (RFs) and LightGBM algorithms were separately employed to construct classification models for seed vitality and prediction models for moisture content. The experimental results demonstrated that the SG-SAE-LightGBM model exhibited outstanding performance in the classification task of sunflower seed vitality, achieving an accuracy rate of 98.65%. Meanwhile, the SNV-XGBoost-LightGBM model showed remarkable achievement in moisture content prediction, with a coefficient of determination (R2) of 0.9715 and root mean square error (RMSE) of 0.8349. In conclusion, this study confirms that the fusion of hyperspectral technology and multivariate data analysis algorithms enables the accurate and rapid assessment of sunflower seed vitality and moisture content, providing robust tools and theoretical support for seed quality evaluation and agricultural production practices. Furthermore, this research not only expands the application of hyperspectral technology in unraveling the intrinsic vitality characteristics of sunflower seeds but also possesses significant theoretical and practical value.

Funder

Sichuan Agricultural University

Publisher

MDPI AG

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3