Abstract
Based on Talbot effect of optical microgratings, we report an ultra-compact sensor for displacement and vibration measurement with resolution down to sub-nanometer level. With no need of optical components such as reflectors, splitters, polarizers, and wave plates, the proposed sensor based on a common-path structure shows a high compactness. Using gratings with period of 3 µm, displacement measurement within a range of 1 mm is demonstrated experimentally. Associated with an interpolation circuit with subdividing factor of 4096, a resolution of 0.73 nm is obtained. The experimental results also show the ability for the sensor to detect in-plane vibration with frequency below 900 Hz. With a sub-nanometer resolution and an ultra-compact structure, the miniature sensor shows potential in applications such as high-precision machinery manufacturing and semiconductor processing.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献