Affiliation:
1. Jinan Guoke Medical Technology Development Co., Ltd
Abstract
Automatic segmentation of layered tissue is critical for optical coherence tomography (OCT) image analysis. The development of deep learning techniques provides various solutions to this problem, while most existing methods suffer from topological errors such as outlier prediction and label disconnection. The channel attention mechanism is a powerful technique to address these problems due to its simplicity and robustness. However, it relies on global average pooling (GAP), which only calculates the lowest frequency component and leaves other potentially useful information unexplored. In this study, we use the discrete wavelet transform (DWT) to extract multi-spectral information and propose the wavelet attention network (WATNet) for tissue layer segmentation. The DWT-based attention mechanism enables multi-spectral analysis with no complex frequency-selection process and can be easily embedded to existing frameworks. Furthermore, the various wavelet bases make the WATNet adaptable to different tasks. Experiments on a self-collected esophageal dataset and two public retinal OCT dataset demonstrated that the WATNet achieved better performance compared to several widely used deep networks, confirming the advantages of the proposed method.
Funder
Natural Science Foundation of Shandong Province
Natural Science Foundation of Jiangsu Province
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献