Wavelet attention network for the segmentation of layer structures on OCT images

Author:

Wang Cong1,Gan Meng1ORCID

Affiliation:

1. Jinan Guoke Medical Technology Development Co., Ltd

Abstract

Automatic segmentation of layered tissue is critical for optical coherence tomography (OCT) image analysis. The development of deep learning techniques provides various solutions to this problem, while most existing methods suffer from topological errors such as outlier prediction and label disconnection. The channel attention mechanism is a powerful technique to address these problems due to its simplicity and robustness. However, it relies on global average pooling (GAP), which only calculates the lowest frequency component and leaves other potentially useful information unexplored. In this study, we use the discrete wavelet transform (DWT) to extract multi-spectral information and propose the wavelet attention network (WATNet) for tissue layer segmentation. The DWT-based attention mechanism enables multi-spectral analysis with no complex frequency-selection process and can be easily embedded to existing frameworks. Furthermore, the various wavelet bases make the WATNet adaptable to different tasks. Experiments on a self-collected esophageal dataset and two public retinal OCT dataset demonstrated that the WATNet achieved better performance compared to several widely used deep networks, confirming the advantages of the proposed method.

Funder

Natural Science Foundation of Shandong Province

Natural Science Foundation of Jiangsu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3