On Machine Learning in Clinical Interpretation of Retinal Diseases Using OCT Images

Author:

Karn Prakash Kumar1ORCID,Abdulla Waleed H.1ORCID

Affiliation:

1. Department of Electrical, Computer and Software Engineering, University of Auckland, Auckland 1010, New Zealand

Abstract

Optical coherence tomography (OCT) is a noninvasive imaging technique that provides high-resolution cross-sectional retina images, enabling ophthalmologists to gather crucial information for diagnosing various retinal diseases. Despite its benefits, manual analysis of OCT images is time-consuming and heavily dependent on the personal experience of the analyst. This paper focuses on using machine learning to analyse OCT images in the clinical interpretation of retinal diseases. The complexity of understanding the biomarkers present in OCT images has been a challenge for many researchers, particularly those from nonclinical disciplines. This paper aims to provide an overview of the current state-of-the-art OCT image processing techniques, including image denoising and layer segmentation. It also highlights the potential of machine learning algorithms to automate the analysis of OCT images, reducing time consumption and improving diagnostic accuracy. Using machine learning in OCT image analysis can mitigate the limitations of manual analysis methods and provide a more reliable and objective approach to diagnosing retinal diseases. This paper will be of interest to ophthalmologists, researchers, and data scientists working in the field of retinal disease diagnosis and machine learning. By presenting the latest advancements in OCT image analysis using machine learning, this paper will contribute to the ongoing efforts to improve the diagnostic accuracy of retinal diseases.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Retinal Disease Classification with Dual Scale Twin Vision Transformers using OCT Imaging;2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2023-10-31

2. Multi-Stage Classification of Retinal OCT Using Multi-Scale Ensemble Deep Architecture;Bioengineering;2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3