Capillary-based fluorescent antenna for visible light communications

Author:

He CuiweiORCID,Collins Steve1,Murata Hideyuki2ORCID

Affiliation:

1. University of Oxford

2. Japan Advanced Institute of Science and Technology

Abstract

The use of fluorescent optical antennas in visible light communications (VLC) systems can enhance their performance by selectively absorbing light from the transmitter and concentrating the resulting fluorescence, whilst preserving a wide field of view. In this paper, we introduce a new and flexible way of creating fluorescent optical antennas. This new antenna structure is a glass capillary which is filled with a mixture of epoxy and a fluorophore before the epoxy is cured. Using this structure, an antenna can be easily and efficiently coupled to a typical photodiode. Consequently, the leakage of photons from the antenna can be significantly reduced when compared to previous antennas created using microscope slides. Moreover, the process of creating the antenna is simple enough for the performance of antennas containing different fluorophores to be compared. In particular, this flexibility has been used to compare VLC systems that incorporate optical antennas containing three different organic fluorescent materials, Coumarin 504 (Cm504), Coumarin 6 (Cm6), and 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), when a white light-emitting diode (LED) is used as the transmitter. Results show that, since it only absorbs light emitted from the gallium nitride (GaN) LED, a fluorophore that hasn’t previously been used in a VLC system, Cm504, can result in a significantly higher modulation bandwidth. In addition, the bit error rate (BER) performance at different orthogonal frequency-division multiplexing (OFDM) data rates of antennas containing different fluorophores is reported. These experiments show for the first time that the best choice of fluorophore depends on the illuminance at the receiver. In particular, when the illuminance is low, the overall performance of the system is dominated by the signal-to-noise ratio (SNR). Under these conditions, the fluorophore with the highest signal gain is the best choice. In contrast, when the illuminance is high, the achievable data rate is determined by the bandwidth of the system and therefore the fluorophore that results in the highest bandwidth is the best choice.

Funder

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3