A Review of Advanced Transceiver Technologies in Visible Light Communications

Author:

He Cuiwei1ORCID,Chen Chen2ORCID

Affiliation:

1. School of Information Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan

2. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

Abstract

Visible Light Communication (VLC) is an emerging technology that utilizes light-emitting diodes (LEDs) for both indoor illumination and wireless communications. It has the potential to enhance the existing WiFi network and connect a large number of high-speed internet users in future smart home environments. Over the past two decades, VLC techniques have made significant strides, resulting in transmission data rates increasing from just a few Mbps to several tens of Gbps. These achievements can be attributed to the development of various transceiver technologies. At the transmitter, LEDs should provide high-quality light for illumination and support wide modulation bandwidths. Meanwhile, at the receiver, optics systems should have functions such as optical filtering, light concentration, and, ideally, a wide field of view (FOV). The photodetector must efficiently convert the optical signal into an electrical signal. Different VLC systems typically consider various transceiver designs. In this paper, we provide a survey of some important emerging technologies used to create advanced optical transceivers in VLC.

Funder

Japan Society for the Promotion of Science (JSPS) KAKENHI

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3