Multifunctional difluoroboron β-diketonate-based luminescent receiver for a high-speed underwater wireless optical communication system

Author:

Wang YueORCID,Wang Jian-Xin,Alkhazragi OmarORCID,Gutiérrez-Arzaluz Luis,Zhang HuafanORCID,Kang Chun HongORCID,Ng Tien KheeORCID,Bakr Osman M.,Mohammed Omar F.,Ooi Boon S.ORCID

Abstract

The last decade has witnessed considerable progress in underwater wireless optical communication in complex environments, particularly in exploring the deep sea. However, it is difficult to maintain a precise point-to-point reception at all times due to severe turbulence in actual situations. To facilitate efficient data transmission, the color-conversion technique offers a paradigm shift in large-area and omnidirectional light detection, which can effectively alleviate the étendue limit by decoupling the field of view and optical gain. In this work, we investigated a series of difluoroboron β-diketonate fluorophores by measuring their photophysical properties and optical wireless communication performances. The emission colors were tuned from blue to green, and >0.5 Gb/s data transmission was achieved with individual color channel in free space by implementing an orthogonal frequency-division multiplexing (OFDM) modulation scheme. In the underwater experiment, the fluorophore with the highest transmission speed was fabricated into a 4×4 cm2 luminescent concentrator, with the concentrated emission from the edges coupled with an optical fiber array, for large-area photodetection and optical beam tracking. The net data rates of 130 Mb/s and 217 Mb/s were achieved based on nonreturn- to-zero on-off keying and OFDM modulation schemes, respectively. Further, the same device was used to demonstrate the linear light beam tracking function with high accuracy, which is beneficial for sustaining a reliable and stable connection in a dynamic, turbulent underwater environment.

Funder

Office of Naval Research Global

King Abdullah University of Science and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3