Improved detectivity and response speed of MoS2 phototransistors based on the negative-capacitance effect and defect engineering

Author:

Jiang WeichaoORCID,Liu Lu,Xu Jingping

Abstract

Due to the unique crystal structure, outstanding optoelectronic properties and a tunable band gap from 1.2-1.8 eV, two-dimensional molybdenum disulfide (MoS2) has attracted extensive attention as a promising candidate for future photodetectors. In this work, a negative-capacitance (NC) MoS2 phototransistor is fabricated by using H f 0.5 Z r 0.5 O 2 (HZO) as ferroelectric layer and Al2O3 as matching layer, and a low subthreshold swing (SS) of 39 mV/dec and an ultrahigh detectivity of 3.736×1014 cmHz1/2W−1 are achieved at room temperature due to the NC effect of the ferroelectric HZO. Moreover, after sulfur (S) treatment on MoS2, the transistor obtained a lower SS of 33 mV/dec, a detectivity of 1.329×1014 cmHz1/2W−1 and specially a faster response time of 3-4 ms at room temperature, attributed to the modulation of photogating effect induced by S-vacancy passivation in MoS2 by the S treatment. Therefore, the combination of the defect engineering on MoS2 and the NC effect from ferroelectric thin film could provide an effective solution for high-sensitivity phototransistors based on two-dimensional materials in the future.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3