Dual-coupling effect enables a high-performance self-powered UV photodetector

Author:

Lin Xianqi1,Wan Lingyu1ORCID,Chen Zhengbang1,Ren Jinlong1,Lin Shuixiu1,Yuan Dingcheng2,Sun Wenhong1,Peng Biaolin3

Affiliation:

1. Guangxi University

2. China Telecom Co.

3. Xidian University

Abstract

Self-powered ultraviolet photodetectors generally operate by utilizing the built-in electric field within heterojunctions or Schottky junctions. However, the effectiveness of self-powered detection is severely limited by the weak built-in electric field. Hence, advances in modulating the built-in electric field within heterojunctions are crucial for performance breakthroughs. Here, we suggest a method to enhance the built-in electric field by taking advantage of the dual-coupling effect between heterojunction and the self-polarization field of ferroelectrics. Under zero bias, the fabricated AgNWs/TiO2/PZT/GaN device achieves a responsivity of 184.31 mA/W and a specific detectivity of 1.7 × 1013 Jones, with an on/off ratio of 8.2 × 106 and rise/decay times reaching 0.16 ms/0.98 ms, respectively. The outstanding properties are primarily attributed to the substantial self-polarization of PZT induced by the p-GaN and the subsequent enhancement of the built-in electric field of the TiO2/PZT heterojunction. Under UV illumination, the dual coupling of the enhanced heterojunction and the self-polarizing field synergistically boost the photo-generated carrier separation and transport, leading to breakthroughs in ferroelectric-based self-powered photodetectors.

Funder

National Natural Science Foundation of China

Specific Research Project of Guangxi for Research Bases and Talents

Key Technology Research and Development Program of Shandong

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3