Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Reference13 articles.
1. F. Moro, E. Esmanhotto, T. Hirtzlin, N. Castellani, A. Trabelsi, T. Dalgaty, G. Molas, F. Andrieu, S. Brivio, S. Spiga, G. Indiveri, M. Payvand, E. Vianello, Hardware calibrated learning to compensate heterogeneity in analog RRAM-based Spiking Neural Networks, in: Proceedings – IEEE International Symposium on Circuits and Systems, Institute of Electrical and Electronics Engineers Inc., 2022: pp. 380–383. doi: 10.1109/ISCAS48785.2022.9937820.
2. A CMOS-memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity;Ahmadi-Farsani;Philos Trans R Society A: Math Phys Eng Sci,2022
3. IEEE International Symposium on Circuits and Systems (ISCAS);Mohan;IEEE,2019
4. Advances in Emerging Memory Technologies: From Data Storage to Artificial Intelligence;Molas;Appl Sci,2021
5. Opportunities and challenges for spintronics in the microelectronics industry;Dieny;Nat Electron,2020
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献