28 nm FD-SOI embedded phase change memory exhibiting near-zero drift at 12 K for cryogenic spiking neural networks (SNNs)

Author:

Palhares Joao Henrique Quintino1,Garg Nikhil2,Mouny Pierre-Antoine2,Beilliard Yann2,Sandrini Jury1,Arnaud Franck1,Anghel Lorena3,Alibart Fabien4,Drouin Dominique2,Galy Philippe1

Affiliation:

1. STMicroelectronics (France)

2. Institut interdisciplinaire d’innovation technologique (3IT), Université de Sherbrooke

3. Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, SPINTEC

4. Laboratoire Nanotechnologies & Nanosystèmes (LN2), CNRS, Université de Sherbrooke

Abstract

Abstract

Seeking to circumvent the bottleneck of conventional computing systems, alternative methods of hardware implementation, whether based on brain-inspired architectures or cryogenic quantum computing systems, invariably suggest the integration of emerging non-volatile memories. However, the lack of maturity, reliability, and cryogenic-compatible memories poses a barrier to the development of such scalable alternative computing solutions. To bridge this gap and outperform traditional CMOS charge-based memories in terms of density and storage, 28 nm Fully Depleted Silicon on Insulator (FD-SOI) substrate-embedded GexSbyTez phase change memories (ePCMs) are characterized down to 12 K. The multi-level resistance programming and its drift over time are investigated. The ePCM can be programmed to achieve and encode 10 different resistance states, at 300 K, 77 K, and 12 K. Interestingly, the drift coefficient is considerably reduced at cryogenic temperatures. Cycle-to-cycle programming variability and resistance drift modelling are carefully used to forecast and evaluate the effect of resistance evolution over time on a fully connected feedforward spiking neural network (SNN) at different temperatures. System-level simulation of a Modified National Institute of Standards and Technology database (MNIST) classification task is performed. The SNN classification accuracy is sustained for up to two years at 77 K and 12 K while a 7–8% drop in accuracy is observed at 300 K. Such results open new horizons for the analogue/multilevel implementation of ePCMs for space and cryogenic applications.

Publisher

Research Square Platform LLC

Reference58 articles.

1. Thompson, N. C., Greenewald, K., Lee, K. & Manso, G. F. The Computational Limits of Deep Learning. (2020).

2. The future of electronics based on memristive systems;Zidan MA;Nat Electron,2018

3. Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing;Vetter JS;Comput Sci Eng,2015

4. Christensen, D. V et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering 2, 022501 (2022).

5. Memristive crossbar arrays for brain-inspired computing;Xia Q;Nat Mater,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3