Author:
Quintino Palhares Joao Henrique,Garg Nikhil,Mouny Pierre-Antoine,Beilliard Yann,Sandrini J.,Arnaud F.,Anghel Lorena,Alibart Fabien,Drouin Dominique,Galy Philippe
Funder
Association Nationale de la Recherche et de la Technologie
EU: ERC
Publisher
Springer Science and Business Media LLC
Reference61 articles.
1. Thompson, N. C., Greenewald, K., Lee, K. & Manso, G. F. The computational limits of deep learning. http://arxiv.org/abs/2007.05558 (2020).
2. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron 1, 22–29 (2018).
3. Vetter, J. S. & Mittal, S. Opportunities for nonvolatile memory systems in extreme-scale high-performance computing. Comput. Sci. Eng. 17, 73–82 (2015).
4. Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comput. Eng. 2, 022501 (2022).
5. Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).