1. Baranchuk, D., Voynov, A., Rubachev, I., Khrulkov, V., Babenko, A., 2022. Label-efficient semantic segmentation with diffusion models. In: International Conference on Learning Representations. URL:.
2. Decoder denoising pretraining for semantic segmentation;Brempong;Trans. Mach. Learn. Res.,2022
3. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A., 2021. Emerging Properties in Self-Supervised Vision Transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 9650–9660.
4. Automatic segmentation of coronary arteries in X-ray angiograms using multiscale analysis and artificial neural networks;Cervantes-Sanchez;Appl. Sci.,2019
5. A simple framework for contrastive learning of visual representations;Chen,2020