Automatic Segmentation of Coronary Arteries in X-ray Angiograms using Multiscale Analysis and Artificial Neural Networks

Author:

Cervantes-Sanchez FernandoORCID,Cruz-Aceves IvanORCID,Hernandez-Aguirre Arturo,Hernandez-Gonzalez Martha AliciaORCID,Solorio-Meza Sergio EduardoORCID

Abstract

This paper presents a novel method for the automatic segmentation of coronary arteries in X-ray angiograms, based on multiscale analysis and neural networks. The multiscale analysis is performed by using Gaussian filters in the spatial domain and Gabor filters in the frequency domain, which are used as inputs by a multilayer perceptron (MLP) for the enhancement of vessel-like structures. The optimal design of the MLP is selected following a statistical comparative analysis, using a training set of 100 angiograms, and the area under the ROC curve ( A z ) for assessment of the detection performance. The detection results of the proposed method are compared with eleven state-of-the-art blood vessel enhancement methods, obtaining the highest performance of A z = 0.9775 , with a test set of 30 angiograms. The database of 130 X-ray coronary angiograms has been outlined by a specialist and approved by a medical ethics committee. On the other hand, the vessel extraction technique was selected from fourteen binary classification algorithms applied to the multiscale filter response. Finally, the proposed segmentation method is compared with twelve state-of-the-art vessel segmentation methods in terms of six binary evaluation metrics, where the proposed method provided the most accurate coronary arteries segmentation with a classification rate of 0.9698 and Dice coefficient of 0.6857 , using the test set of angiograms. In addition to the experimental results, the performance in the detection and segmentation steps of the proposed method have also shown that it can be highly suitable for systems that perform computer-aided diagnosis in X-ray imaging.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3