1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org, https://www.tensorflow.org/.
2. Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images;Awan;Sci Rep,2017
3. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer;Bejnordi;JAMA,2017
4. Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images;Bejnordi;J. Med. Imaging,2017
5. Supervised and unsupervised cell-nuclei detection in immunohistology;Bug,2019