A comprehensive review of tubule formation in histopathology images: advancement in tubule and tumor detection techniques

Author:

Siet Joseph Jiun Wen,Tan Xiao Jian,Cheor Wai Loon,Ab Rahman Khairul Shakir,Cheng Ee Meng,Wan Muhamad Wan Zuki Azman,Yip Sook Yee

Abstract

AbstractBreast cancer, the earliest documented cancer in history, stands as a foremost cause of mortality, accounting for 684,996 deaths globally in 2020 (15.5% of all female cancer cases). Irrespective of socioeconomic factors, geographic locations, race, or ethnicity, breast cancer ranks as the most frequently diagnosed cancer in women. The standard grading for breast cancer utilizes the Nottingham Histopathology Grading (NHG) system, which considers three crucial features: mitotic counts, nuclear pleomorphism, and tubule formation. Comprehensive reviews on features, for example, mitotic count and nuclear pleomorphism have been available thus far. Nevertheless, a thorough investigation specifically focusing on tubule formation aligned with the NHG system is currently lacking. Motivated by this gap, the present study aims to unravel tubule formation in histopathology images via a comprehensive review of detection approaches involving tubule and tumor features. Without temporal constraints, a structured methodology is established in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, resulting in 12 articles for tubule detection and 67 included articles for tumor detection. Despite the primary focus on breast cancer, the structured search string extends beyond this domain to encompass any cancer type utilizing histopathology images as input, focusing on tubule and tumor detection. This broadened scope is essential. Insights from approaches in tubule and tumor detection for various cancers can be assimilated, integrated, and contributed to an enhanced understanding of tubule formation in breast histopathology images. This study compiles evidence-based analyses into a cohesive document, offering comprehensive information to a diverse audience, including newcomers, experienced researchers, and stakeholders interested in the subject matter.

Funder

Tunku Abdul Rahman University of Management and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3