Automatic fracture density update using smart well data and artificial neural networks
Author:
Publisher
Elsevier BV
Subject
Computers in Earth Sciences,Information Systems
Reference19 articles.
1. Al-Anazi, A., Babadagli, T., 2007. Use of real-time dynamic data to generate fracture network models. Paper IPTC 11492. In: Proceedings of the International Petroleum Technology Conference, Dubai, UAE. pp. 10.
2. Athichanagorn, S., Horne, R., Kikani, J., 1999. Processing and interpretation of long-term data from permanent downhole pressure gauges. Paper SPE 56419. In: Proceedings of the Society of Petroleum Engineers Annual Technical Conference and Exhibition, Houston, TX, USA. pp. 16.
3. Aydinoglu, G. Bhat, M., Ertekin, T., 2002. Characterization of partially sealing faults from pressure transient data. Paper SPE 78715. In: Proceedings of the Society of Petroleum Engineers Eastern Regional Meeting, Lexington, Kentucky, USA. pp. 13.
4. Fractal analysis of 2D fracture networks of geothermal reservoir in south-western Turkey;Babadagli;Journal of Volcanology and Geothermal Research,2001
5. Boerner, S., Gray, D., Todorovic-Marinic, D., Zellou, M., Schnerk, G., 2003. Employing neural networks to integrate seismic and other data for the prediction of fracture intensity. Paper SPE 84453. In: Proceedings of the Society of Petroleum Engineers Annual Technical Conference and Exhibition, Denver, CO, USA. pp. 13.
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Interpretable knowledge-guided framework for modeling reservoir water-sensitivity damage based on Light Gradient Boosting Machine using Bayesian optimization and hybrid feature mining;Engineering Applications of Artificial Intelligence;2024-07
2. Application of Unconventional Seismic Attributes and Unsupervised Machine Learning for the Identification of Fault and Fracture Network;Applied Sciences;2020-06-02
3. Evaluation of an uncertainty reduction methodology based on Iterative Sensitivity Analysis (ISA) applied to naturally fractured reservoirs;Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles;2019
4. Characterization of tight-gas sand reservoirs from horizontal-well performance data using an inverse neural network;Journal of Natural Gas Science and Engineering;2018-11
5. Geological Feature Prediction Using Image-Based Machine Learning;Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description;2018
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3