Application of Unconventional Seismic Attributes and Unsupervised Machine Learning for the Identification of Fault and Fracture Network

Author:

Ashraf UmarORCID,Zhang HucaiORCID,Anees AqsaORCID,Nasir Mangi HassanORCID,Ali Muhammad,Ullah ZaheenORCID,Zhang XiaonanORCID

Abstract

The identification of small scale faults (SSFs) and fractures provides an improved understanding of geologic structural features and can be exploited for future drilling prospects. Conventional SSF and fracture characterization are challenging and time-consuming. Thus, the current study was conducted with the following aims: (a) to provide an effective way of utilizing the seismic data in the absence of image logs and cores for characterizing SSFs and fractures; (b) to present an unconventional way of data conditioning using geostatistical and structural filtering; (c) to provide an advanced workflow through multi-attributes, neural networks, and ant-colony optimization (ACO) for the recognition of fracture networks; and (d) to identify the fault and fracture orientation parameters within the study area. Initially, a steering cube was generated, and a dip-steered median filter (DSMF), a dip-steered diffusion filter (DSDF), and a fault enhancement filter (FEF) were applied to sharpen the discontinuities. Multiple structural attributes were applied and shortlisted, including dip and curvature attributes, filtered and unfiltered similarity attributes, thinned fault likelihood (TFL), fracture density, and fracture proximity. These shortlisted attributes were computed through unsupervised vector quantization (UVQ) neural networks. The results of the UVQ revealed the orientations, locations, and extensions of fractures in the study area. The ACO proved helpful in identifying the fracture parameters such as fracture length, dip angle, azimuth, and surface area. The adopted workflow also revealed a small scale fault which had an NNW–SSE orientation with minor heave and throw. The implemented workflow of structural interpretation is helpful for the field development of the study area and can be applied worldwide in carbonate, sand, coal, and shale gas fields.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3