Evaluation of an uncertainty reduction methodology based on Iterative Sensitivity Analysis (ISA) applied to naturally fractured reservoirs

Author:

Costa Luís Augusto NagasakiORCID,Maschio Célio,Schiozer Denis José

Abstract

History matching for naturally fractured reservoirs is challenging because of the complexity of flow behavior in the fracture-matrix combination. Calibrating these models in a history-matching procedure normally requires integration with geostatistical techniques (Big Loop, where the history matching is integrated to reservoir modeling) for proper model characterization. In problems involving complex reservoir models, it is common to apply techniques such as sensitivity analysis to evaluate and identify most influential attributes to focus the efforts on what most impact the response. Conventional Sensitivity Analysis (CSA), in which a subset of attributes is fixed at a unique value, may over-reduce the search space so that it might not be properly explored. An alternative is an Iterative Sensitivity Analysis (ISA), in which CSA is applied multiple times throughout the iterations. ISA follows three main steps: (a) CSA identifies Group i of influential attributes (i = 1, 2, 3, …, n); (b) reduce uncertainty of Group i, with other attributes with fixed values; and (c) return to step (a) and repeat the process. Conducting CSA multiple times allows the identification of influential attributes hidden by the high uncertainty of the most influential attributes. In this work, we assess three methods: Method 1 – ISA, Method 2 – CSA, and Method 3 – without sensitivity analysis, i.e., varying all uncertain attributes (larger searching space). Results showed that the number of simulation runs for Method 1 dropped 24% compared to Method 3 and 12% to Method 2 to reach a similar matching quality of acceptable models. In other words, Method 1 reached a similar quality of results with fewer simulations. Therefore, ISA can perform as good as CSA demanding fewer simulations. All three methods identified the same five most influential attributes of the initial 18. Even with many uncertain attributes, only a small percentage is responsible for most of the variability of responses. Also, their identification is essential for efficient history matching. For the case presented in this work, few fracture attributes were responsible for most of the variability of the responses.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3