High-quality fracture network mapping using high frequency logging while drilling (LWD) data: MSEEL case study
-
Published:2022-12
Issue:
Volume:10
Page:100421
-
ISSN:2666-8270
-
Container-title:Machine Learning with Applications
-
language:en
-
Short-container-title:Machine Learning with Applications
Author:
Fathi EbrahimORCID, Carr Timothy R., Adenan Mohammad FaiqORCID, Panetta BrianORCID, Kumar Abhash, Carney B.J.
Reference23 articles.
1. Ansari, A., Fathi, E., Belyadi, F., Takbiri-Borujeni, A., & Belyadi, H. (2018). Data-based smart model for real-time liquid loading diagnostics in Marcellus Shale via machine learning. In SPE Canada unconventional resources conference. 2. Hydraulic fracturing in unconventional reservoirs: theories, operations, and economic analysis;Belyadi,2019 3. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures;Bergstra;The Journal of Machine Learning Research (JMLR),2013 4. Carr, T., Fathi, E., Bohn, R., Faiq, A. M., Li, L., Panetta, B., Carney, B. J., & Mitchell, N. (2022). Importance of Preexisting Fractures to Completion and Production Efficiencies in the Marcellus Shale Energy and Environmental Lab MSEEL. In The SPE hydraulic fracturing technology conference and exhibition, the Woodlands, Texas, USA (p. 2022). 5. Gross, M. R., Hyman, J. D., Srinivasan, S., O’Malley, D., Karra, S., Mudunru, M. K., Sweeney, M., Fresh, L., Carey, B., Guthrie, B., Carr, T., Li, L., Crandall, D., & Viswanathan, H. (2021). A Physics-informed Machine Learning Workflow to Forecast Production in a Fractured Marcellus Shale Reservoir. In SPE/AAPG/SEG unconventional resources technology conference.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|