Simultaneous well spacing and completion optimization using an automated machine learning approach. A case study of the Marcellus Shale reservoir, northeastern United States

Author:

Fathi Ebrahim1ORCID,Takbiri-Borujeni Ali2,Belyadi Fatemeh3,Adenan Mohammad Faiq1

Affiliation:

1. Department of Petroleum and natural gas engineering, West Virginia University, Morgantown, West Virginia 26506, USA

2. Independent Researcher, Seattle, WA 98109, USA

3. Obsertelligence LLC, Aubrey, Texas 76227-5741, USA

Abstract

Optimizing unconventional field development requires simultaneous optimization of well spacing and completion design. However, the conventional practice of using cross plots and sensitivity analysis via Monte Carlo simulations for independent optimization of well spacing and completion design has proved inadequate for unconventional reservoirs. This is due to the inability of cross plots to capture non-linear cross-correlations between parameters affecting hydrocarbon production, and the computational expense and difficulty of Monte Carlo simulations. Recently, automated machine learning (AutoML) workflows have been used to tackle complex problems. However, applying AutoML workflows to engineering problems presents unique challenges, as achieving high accuracy in forecasting the physics of the problem is crucial. To address this issue, a new physics-informed AutoML workflow based on the TPOT open-source tool developed that guarantees the physical plausibility of the optimum model while minimizing human bias and uncertainty. The workflow has been implemented in a Marcellus Shale reservoir with over 1500 wells to determine the optimal well spacing and completion design parameters for both the field and each well. The results show that using a shorter stage length and a higher sand-to-water ratio is preferable for this field, as it can increase cumulative gas production by up to 8%. Additionally, it is observed that fifty-percentile cumulative gas predictions are in close agreement with actual field productions. Thematic collection: This article is part of the Digitally enabled geoscience workflows: unlocking the power of our data collection available at: https://www.lyellcollection.org/topic/collections/digitally-enabled-geoscience-workflows

Publisher

Geological Society of London

Subject

Earth and Planetary Sciences (miscellaneous),Economic Geology,Geochemistry and Petrology,Geology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3