Comparison of bias-corrected multisatellite precipitation products by deep learning framework

Author:

Le Xuan-Hien,Nguyen Van Linh,Hai Nguyen Duc,Nguyen Giang V.,Jung Sungho,Lee Giha

Funder

Korea Environmental Industry and Technology Institute

Ministry of Environment

Publisher

Elsevier BV

Subject

Management, Monitoring, Policy and Law,Computers in Earth Sciences,Earth-Surface Processes,Global and Planetary Change

Reference84 articles.

1. Abadi, M. et al., 2015. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. ArXiv, abs/1603.04467.

2. Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate;Ajaaj;Stochastic Environ. Res. Risk Assess.,2016

3. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies;Ashouri;Bull. Am. Meteorol. Soc.,2015

4. Assessing the efficacy of high-resolution satellite-based PERSIANN-CDR precipitation product in simulating streamflow;Ashouri;J. Hydrometeorol.,2016

5. RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements;Baez-Villanueva;Remote Sens. Environ.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3