Assessing the Efficacy of High-Resolution Satellite-Based PERSIANN-CDR Precipitation Product in Simulating Streamflow

Author:

Ashouri Hamed1,Nguyen Phu1,Thorstensen Andrea1,Hsu Kuo-lin1,Sorooshian Soroosh1,Braithwaite Dan1

Affiliation:

1. Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Abstract

Abstract This study aims to investigate the performance of Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) in a rainfall–runoff modeling application over the past three decades. PERSIANN-CDR provides precipitation data at daily and 0.25° temporal and spatial resolutions from 1983 to present for the 60°S–60°N latitude band and 0°–360° longitude. The study is conducted in two phases over three test basins from the Distributed Hydrologic Model Intercomparison Project, phase 2 (DMIP2). In phase 1, a more recent period of time (2003–10) when other high-resolution satellite-based precipitation products are available is chosen. Precipitation evaluation analysis, conducted against stage IV gauge-adjusted radar data, shows that PERSIANN-CDR and TRMM Multisatellite Precipitation Analysis (TMPA) have close performances with a higher correlation coefficient for TMPA (~0.8 vs 0.75 for PERSIANN-CDR) and almost the same root-mean-square deviation (~6) for both products. TMPA and PERSIANN-CDR outperform PERSIANN, mainly because, unlike PERSIANN, TMPA and PERSIANN-CDR are gauge-adjusted precipitation products. The National Weather Service Office of Hydrologic Development Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) is then forced with PERSIANN, PERSIANN-CDR, TMPA, and stage IV data. Quantitative analysis using five different statistical and model efficiency measures against USGS streamflow observation show that in general in all three DMIP2 basins, the simulated hydrographs forced with PERSIANN-CDR and TMPA have close agreement. Given the promising results in the first phase, the simulation process is extended back to 1983 where only PERSIANN-CDR rainfall estimates are available. The results show that PERSIANN-CDR-derived streamflow simulations are comparable to USGS observations with correlation coefficients of ~0.67–0.73, relatively low biases (~5%–12%), and high index of agreement criterion (~0.68–0.83) between PERSIANN-CDR-simulated daily streamflow and USGS daily observations. The results prove the capability of PERSIANN-CDR in hydrological rainfall–runoff modeling application, especially for long-term streamflow simulations over the past three decades.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3