An Innovative Correction–Fusion Approach for Multi-Satellite Precipitation Products Conditioned by Gauge Background Fields over the Lancang River Basin

Author:

Nan Linjiang12,Yang Mingxiang2ORCID,Wang Hao2,Wang Hejia2,Dong Ningpeng2ORCID

Affiliation:

1. The College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China

2. Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

Satellite precipitation products can help improve precipitation estimates where ground-based observations are lacking; however, their relative accuracy and applicability in data-scarce areas remain unclear. Here, we evaluated the accuracy of different satellite precipitation datasets for the Lancang River Basin, Western China, including the Tropical Rainfall Measuring Mission (TRMM) 3B42RT, the Global Precipitation Measurement Integrated Multi-satellitE Retrievals (GPM IMERG), and Fengyun 2G (FY-2G) datasets. The results showed that GPM IMERG and FY-2G are superior to TRMM 3B42RT for meeting local research needs. A subsequent bias correction on these two datasets significantly increased the correlation coefficient and probability of detection of the products and reduced error indices such as the root mean square error and mean absolute error. To further improve data quality, we proposed a novel correction–fusion method based on window sliding data correction and Bayesian data fusion. Specifically, the corrected FY-2G dataset was merged with GPM IMERG Early, Late, and Final Runs. The resulting FY-Early, FY-Late, and FY-Final fusion datasets showed high correlation coefficients, strong detection performances, and few observation errors, thereby effectively extending local precipitation data sources. The results of this study provide a scientific basis for the rational use of satellite precipitation products in data-scarce areas, as well as reliable data support for precipitation forecasting and water resource management in the Lancang River Basin.

Funder

Water Science and Technology Project of Ordos City

Science and Technology Project of China Huaneng Group Research on Integrated Meteorology and Hydrology Forecasting System in Lancang River Basin

China Power Construction Corporation Technology Project

Key R&D Plan Project in Yunnan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3