NetGO 3.0: Protein Language Model Improves Large-Scale Functional Annotations

Author:

Wang Shaojun1ORCID,You Ronghui1ORCID,Liu Yunjia2ORCID,Xiong Yi34ORCID,Zhu Shanfeng15678ORCID

Affiliation:

1. Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University , Shanghai 200433 , China

2. School of Life Sciences, Fudan University , Shanghai 200433 , China

3. Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University , Shanghai 200240 , China

4. Shanghai Artificial Intelligence Laboratory , Shanghai 200232 , China

5. Shanghai Qi Zhi Institute , Shanghai 200030 , China

6. MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University , Shanghai 200433 , China

7. Shanghai Key Laboratory of Intelligent Information Processing and Shanghai Institute of Artificial Intelligence Algorithm, Fudan University , Shanghai 200433 , China

8. Zhangjiang Fudan International Innovation Center , Shanghai 200433 , China

Abstract

Abstract As one of the state-of-the-art automated function prediction (AFP) methods, NetGO 2.0 integrates multi-source information to improve the performance. However, it mainly utilizes the proteins with experimentally supported functional annotations without leveraging valuable information from a vast number of unannotated proteins. Recently, protein language models have been proposed to learn informative representations [e.g., Evolutionary Scale Modeling (ESM)-1b embedding] from protein sequences based on self-supervision. Here, we represented each protein by ESM-1b and used logistic regression (LR) to train a new model, LR-ESM, for AFP. The experimental results showed that LR-ESM achieved comparable performance with the best-performing component of NetGO 2.0. Therefore, by incorporating LR-ESM into NetGO 2.0, we developed NetGO 3.0 to improve the performance of AFP extensively. NetGO 3.0 is freely accessible at https://dmiip.sjtu.edu.cn/ng3.0.

Funder

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Shanghai Research Center for Brain Science and Brain-Inspired Intelligence Technology

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3