PANDA-3D: protein function prediction based on AlphaFold models

Author:

Zhao Chenguang1ORCID,Liu Tong2ORCID,Wang Zheng2ORCID

Affiliation:

1. Computer and Information Sciences Department, St. Ambrose University , 518 W Locust St, Davenport, IA 52803, USA

2. Department of Computer Science, University of Miami , 1365 Memorial Drive, Coral Gables, FL 33124, USA

Abstract

Abstract Previous protein function predictors primarily make predictions from amino acid sequences instead of tertiary structures because of the limited number of experimentally determined structures and the unsatisfying qualities of predicted structures. AlphaFold recently achieved promising performances when predicting protein tertiary structures, and the AlphaFold protein structure database (AlphaFold DB) is fast-expanding. Therefore, we aimed to develop a deep-learning tool that is specifically trained with AlphaFold models and predict GO terms from AlphaFold models. We developed an advanced learning architecture by combining geometric vector perceptron graph neural networks and variant transformer decoder layers for multi-label classification. PANDA-3D predicts gene ontology (GO) terms from the predicted structures of AlphaFold and the embeddings of amino acid sequences based on a large language model. Our method significantly outperformed a state-of-the-art deep-learning method that was trained with experimentally determined tertiary structures, and either outperformed or was comparable with several other language-model-based state-of-the-art methods with amino acid sequences as input. PANDA-3D is tailored to AlphaFold models, and the AlphaFold DB currently contains over 200 million predicted protein structures (as of May 1st, 2023), making PANDA-3D a useful tool that can accurately annotate the functions of a large number of proteins. PANDA-3D can be freely accessed as a web server from http://dna.cs.miami.edu/PANDA-3D/ and as a repository from https://github.com/zwang-bioinformatics/PANDA-3D.

Funder

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3