INGA 2.0: improving protein function prediction for the dark proteome

Author:

Piovesan Damiano1ORCID,Tosatto Silvio C E12ORCID

Affiliation:

1. Department of Biomedical Sciences, University of Padua, Padua, Italy

2. CNR Institute of Neuroscience, Padua, Italy

Abstract

Abstract Our current knowledge of complex biological systems is stored in a computable form through the Gene Ontology (GO) which provides a comprehensive description of genes function. Prediction of GO terms from the sequence remains, however, a challenging task, which is particularly critical for novel genomes. Here we present INGA 2.0, a new version of the INGA software for protein function prediction. INGA exploits homology, domain architecture, interaction networks and information from the ‘dark proteome’, like transmembrane and intrinsically disordered regions, to generate a consensus prediction. INGA was ranked in the top ten methods on both CAFA2 and CAFA3 blind tests. The new algorithm can process entire genomes in a few hours or even less when additional input files are provided. The new interface provides a better user experience by integrating filters and widgets to explore the graph structure of the predicted terms. The INGA web server, databases and benchmarking are available from URL: https://inga.bio.unipd.it/.

Funder

Marie Skłodowska-Curie

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference28 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A CNN-CBAM-BIGRU model for protein function prediction;Statistical Applications in Genetics and Molecular Biology;2024-01-01

2. SLPFA: Protein Structure-Label Embedding Attention Network for Protein Function Annotation;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

3. Large-scale predicting protein functions through heterogeneous feature fusion;Briefings in Bioinformatics;2023-07

4. NetGO 3.0: Protein Language Model Improves Large-Scale Functional Annotations;Genomics, Proteomics & Bioinformatics;2023-04-01

5. Machine learning for the identification of respiratory viral attachment machinery from sequences data;PLOS ONE;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3