The LPST-Net: A new deep interval health monitoring and prediction framework for bearing-rotor systems under complex operating conditions
Author:
Funder
Guangdong Province Laboratory of Advanced Manufacturing Science and Technology
National Natural Science Foundation of China
Publisher
Elsevier BV
Reference60 articles.
1. A new convolutional dual-channel Transformer network with time window concatenation for remaining useful life prediction of rolling bearings;Li;Advanced Engineering Informatics,2023
2. Research on a remaining useful life prediction method for degradation angle identification two-stage degradation process;Wang;Mech. Syst. Sig. Process.,2023
3. State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing;Kumar;Reliab. Eng. Syst. Saf.,2022
4. A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network;Gupta;Knowl.-Based Syst.,2023
5. Deep transfer learning-based hierarchical adaptive remaining useful life prediction of bearings considering the correlation of multistage degradation;Zhang;Knowl.-Based Syst.,2023
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. LSTA-Net framework: Pioneering intelligent diagnostics for insulating bearings under real-world complex operational conditions and its interpretability;Mechanical Systems and Signal Processing;2025-01
2. LTFM-net framework: Advanced intelligent diagnostics and interpretability of insulated bearing faults in offshore wind turbines under complex operational conditions;Ocean Engineering;2024-10
3. RTCA-Net: A New Framework for Monitoring the Wear Condition of Aero Bearing with a Residual Temporal Network under Special Working Conditions and Its Interpretability;Mathematics;2024-08-29
4. A New Strategy: Remaining Useful Life Prediction of Wind Power Bearings Based on Deep Learning under Data Missing Conditions;Mathematics;2024-07-05
5. Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings;Sensors;2024-06-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3