RTCA-Net: A New Framework for Monitoring the Wear Condition of Aero Bearing with a Residual Temporal Network under Special Working Conditions and Its Interpretability

Author:

Yang Tongguang1,Huang Xingyuan2,Zhang Yongjian1,Li Jinglan3,Zhou Xianwen2,Han Qingkai1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China

2. School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China

3. School of Physics and Electronic Engineering, Linyi University, Linyi 276012, China

Abstract

The inter-shaft bearing is the core component of a high-pressure rotor support system of a high-thrust aero engine. One of the most challenging tasks for a PHM is monitoring its working condition. However, considering that in the bearing rotor system of a high-thrust aero engine bearings are prone to wear failure due to unbalanced or misaligned faults of the rotor system, especially in harsh environments, such as those at high operating loads and high rotation speeds, bearing wear can easily evolve into serious faults. Compared with aero engine fault diagnosis and RUL prediction, relatively little research has been conducted on bearing condition monitoring. In addition, considering how to evaluate future performance states with limited time series data is a key problem. At the same time, the current deep neural network model has the technical challenge of poor interpretability. In order to fill the above gaps, we developed a new framework of a residual space–time feature fusion focusing module named RTCA-Net, which focuses on solving the key problem. It is difficult to accurately monitor the wear state of aero engine inter-shaft bearings under special working conditions in practical engineering. Specifically, firstly, a residual space–time structure module was innovatively designed to capture the characteristic information of the metal dust signal effectively. Secondly, a feature-focusing module was designed. By adjusting the change in the weight coefficient during training, the RTCA-Net framework can select the more useful information for monitoring the wear condition of inter-shaft bearings. Finally, the experimental dataset of metal debris was verified and compared with seven other methods, such as the RTC-Net. The results showed that the proposed RTCA-Net framework has good generalization, superiority, and credibility.

Funder

Guangdong Basic and Applied Basic Research Foundation

Ji Hua Laboratory Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3