Deep transfer learning-based hierarchical adaptive remaining useful life prediction of bearings considering the correlation of multistage degradation
Author:
Publisher
Elsevier BV
Subject
Artificial Intelligence,Information Systems and Management,Management Information Systems,Software
Reference60 articles.
1. Prognostics and health management: A review of vibration based bearing and gear health indicators;Wang;IEEE Access,2018
2. A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM: shallow and deep learning;Hamadache;JMST Adv.,2019
3. An adaptive prediction approach for rolling bearing remaining useful life based on multistage model with three-source variability;Liu;Reliab. Eng. Syst. Saf.,2022
4. Bearing degradation assessment and remaining useful life estimation based on Kullback–Leibler divergence and Gaussian processes regression;shankar kumar;Measurement,2021
5. Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics;Chang;Reliab. Eng. Syst. Saf.,2022
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Remaining useful life prediction model of cross-domain rolling bearing via dynamic hybrid domain adaptation and attention contrastive learning;Computers in Industry;2025-01
2. Remaining useful life prediction across operating conditions based on deep subdomain adaptation network considering the weighted multi-source domain;Knowledge-Based Systems;2024-10
3. A prognostic model for multi-stage degraded equipment under zero life label combining CDBN and Bayesian bidirectional GRU;Advanced Engineering Informatics;2024-10
4. The LPST-Net: A new deep interval health monitoring and prediction framework for bearing-rotor systems under complex operating conditions;Advanced Engineering Informatics;2024-10
5. A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off;Reliability Engineering & System Safety;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3