Multiple AI model integration strategy—Application to saturated hydraulic conductivity prediction from easily available soil properties
Author:
Publisher
Elsevier BV
Subject
Earth-Surface Processes,Soil Science,Agronomy and Crop Science
Reference50 articles.
1. Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data;Adamowski;J. Hydroinformatics,2012
2. Artificial neural network estimation of saturated hydraulic conductivity;Agyare;Vadose Zone J.,2007
3. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management1;Ahuja;Soil Sci. Soc. Am. J.,1984
4. An assessment of the beerkan method for determining the hydraulic properties of a sandy loam soil;Aiello;Geoderma,2014
5. Predicting saturated hydraulic conductivity by artificial intelligence and regression models;Arshad;ISRN Soil Sci.,2013
Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Random forest approach to estimate soil thermal diffusivity: Evaluation and comparison with traditional pedotransfer functions;Soil and Tillage Research;2024-12
2. Accurate prediction of spatial distribution of soil potentially toxic elements using machine learning and associated key influencing factors identification: A case study in mining and smelting area in southwestern China;Journal of Hazardous Materials;2024-10
3. Assessment of hydraulic conductivity of compacted clayey soil using artificial neural network: an investigation on structural and database multicollinearity;Earth Science Informatics;2024-06-05
4. Implementation and efficient evaluation of backpropagation network training algorithms in parametric simulations of soil hydraulic conductivity curve;Journal of Hydrology;2024-06
5. Estimation of soil erodability parameters based on different machine algorithms integrated with remote sensing techniques;International Journal of Environmental Science and Technology;2024-04-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3