Predicting Saturated Hydraulic Conductivity by Artificial Intelligence and Regression Models

Author:

Arshad R. Rezaei1,Sayyad Gh.1,Mosaddeghi M.2,Gharabaghi B.3

Affiliation:

1. Department of Soil Science, Faculty of Agrriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2. Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran

3. School of Engineering, University of Guelph, Guelph, ON, Canada

Abstract

Saturated hydraulic conductivity (Ks), among other soil hydraulic properties, is important and necessary in water and mass transport models and irrigation and drainage studies. Although this property can be measured directly, its measurement is difficult and very variable in space and time. Thus pedotransfer functions (PTFs) provide an alternative way to predict the Ks from easily available soil data. This study was done to predict the Ks in Khuzestan province, southwest Iran. Three Intelligence models including (radial basis function neural networks (RBFNN), multi layer perceptron neural networks (MLPNN)), adaptive neuro-fuzzy inference system (ANFIS) and multiple-linear regression (MLR) to predict the Ks were used. Input variable included sand, silt, and clay percents and bulk density. The total of 175 soil samples was divided into two groups as 130 for the training and 45 for the testing of PTFs. The results indicated that ANFIS and RBFNN are effective methods for Ks prediction and have better accuracy compared with the MLPNN and MLR models. The correlation between predicted and measured Ks values using ANFIS was better than artificial neural network (ANN). Mean square error values for ANFIS, ANN, and MLR were 0.005, 0.02, and 0.17, respectively, which shows that ANFIS model is a powerful tool and has better performance than ANN and MLR in prediction of Ks.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3