Automated FTIR Analysis of Free Fatty Acids or Moisture in Edible Oils

Author:

Al-Alawi Ahmed1,van de Voort Frederick R.1,Sedman Jacqueline1,Ghetler Andrew1

Affiliation:

1. McGill University, Quebec, Canada

Abstract

An FTIR spectrometer coupled to an autosampler and attendant methodologies for high-volume automated quantitative analysis of free fatty acids (FFA) or moisture in edible oils are described. Samples are prepared by adding 20 g of oil to a 50 ml screw-capped vial, to which is added either a methanol/NaHNCN solution or dry acetonitrile in a I:I (w/v) ratio for FFA or H2O analysis, respectively. After capping with Mylar-lined septum caps, the vials are loaded into an autosampler tray, which is then agitated vigorously to extract the constituent of interest from the oil into the oil-immiscible solvent, and are then left to stand for ∼ 10 min to allow for phase separation. The upper solvent layer in each vial is aspirated successively into the IR cell, with the Mylar seal allowing facile autosampler needle penetration into the vials. The spectra of the sample extraction solvents serve as spectral backgrounds in addition to being used in monitoring cell path length and verifying cell loading. FFA and H2O analyses are carried out using 100 and 500 μm CaF2 cells, respectively. For FFA analysis, quantification is achieved using the ν (COO) band at 1573 cm−1, while moisture is determined using water absorption bands at 3629 or 1631 cm−1, depending on the moisture range of the samples. Calibration procedures and data are presented. The spectrometer and autosampler are controlled using proprietary Universal Method Platform for InfraRed Evaluation software, which provides a simple user interface and automates the spectral analysis; the output data can also be sent to a Laboratory Information Management System. Validation and performance data obtained with this automated system demonstrate that it is capable of analyzing >60 samples/h, a rate commensurate with the throughput required by commercial contract or high-volume process control laboratories.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3