NovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis

Author:

Eustáquio Alessandra S.1,Li Shu-Ming1,Heide Lutz1

Affiliation:

1. Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany

Abstract

The biosynthetic gene cluster of the aminocoumarin antibiotic novobiocin contains two putative regulatory genes, i.e. novE and novG. The predicted gene product of novG shows a putative helix–turn–helix DNA-binding motif and shares sequence similarity with StrR, a well-studied pathway-specific transcriptional activator of streptomycin biosynthesis. Here functional proof is provided, by genetic and biochemical approaches, for the role of NovG as a positive regulator of novobiocin biosynthesis. The entire novobiocin cluster of the producer organism Streptomyces spheroides was expressed in the heterologous host Streptomyces coelicolor M512, and additional strains were produced which lacked the novG gene within the heterologously expressed cluster. These ΔnovG strains produced only 2 % of the novobiocin formed by the S. coelicolor M512 strains carrying the intact novobiocin cluster. The production could be restored by introducing an intact copy of novG into the mutant. The presence of novG on a multicopy plasmid in the strain containing the intact cluster led to almost threefold overproduction of the antibiotic, suggesting that novobiocin biosynthesis is limited by the availability of NovG protein. Furthermore, purified N-terminal His6-tagged NovG showed specific DNA-binding activity for the novGnovH and the cloGcloY intergenic regions of the novobiocin and clorobiocin biosynthetic gene clusters, respectively. By comparing the DNA sequences of the fragments binding NovG, conserved inverted repeats were identified in both fragments, similar to those identified as the binding sites for StrR. The consensus sequence for the StrR and the putative NovG binding sites was GTTCRACTG(N)11CRGTYGAAC. Therefore, NovG and StrR apparently belong to the same family of DNA-binding regulatory proteins.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3