Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger

Author:

Yuan Xiao-Lian1,Goosen Coenie23,Kools Harrie4,van der Maarel Marc J. E. C.52,van den Hondel Cees A. M. J. J1,Dijkhuizen Lubbert23,Ram Arthur F. J.61

Affiliation:

1. Institute of Biology Leiden, Leiden University, Fungal Genetics Research Group, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands

2. Centre for Carbohydrate Bioprocessing TNO-University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands

3. Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands

4. Microbiology, Fungal Genomics Group, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands

5. TNO Quality of Life, Business Unit Innovative Ingredients and Products, Rouaanstraat 27, 9723 CC Groningen, The Netherlands

6. TNO Quality of Life, Business Unit Microbiology, Utrechtseweg 48, 3500 AJ Zeist, The Netherlands

Abstract

As a soil fungus, Aspergillus niger can metabolize a wide variety of carbon sources, employing sets of enzymes able to degrade plant-derived polysaccharides. In this study the genome sequence of A. niger strain CBS 513.88 was surveyed, to analyse the gene/enzyme network involved in utilization of the plant storage polymer inulin, and of sucrose, the substrate for inulin synthesis in plants. In addition to three known activities, encoded by the genes suc1 (invertase activity; designated sucA), inuE (exo-inulinase activity) and inuA/inuB (endo-inulinase activity), two new putative invertase-like proteins were identified. These two putative proteins lack N-terminal signal sequences and therefore are expected to be intracellular enzymes. One of these two genes, designated sucB, is expressed at a low level, and its expression is up-regulated when A. niger is grown on sucrose- or inulin-containing media. Transcriptional analysis of the genes encoding the sucrose- (sucA) and inulin-hydrolysing enzymes (inuA and inuE) indicated that they are similarly regulated and all strongly induced on sucrose and inulin. Analysis of a ΔcreA mutant strain of A. niger revealed that expression of the extracellular inulinolytic enzymes is under control of the catabolite repressor CreA. Expression of the inulinolytic enzymes was not induced by fructose, not even in the ΔcreA background, indicating that fructose did not act as an inducer. Evidence is provided that sucrose, or a sucrose-derived intermediate, but not fructose, acts as an inducer for the expression of inulinolytic genes in A. niger.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3