Robust Control of Collaborative Manipulators - Flexible Object System

Author:

Esakki Balasubramanian1,Bhat Rama B.2,Su Chun-Yi2

Affiliation:

1. Department of Mechanical Engineering, Vel Tech Dr. RR and Dr. SR Technical University, India

2. Department of Mechanical and Industrial Engineering, Concordia University, Canada

Abstract

Abstract In many manufacturing and automobile industries, flexible components need to be positioned with the help of coordinated operations of manipulators. This paper deals with the robust design of a control system for two planar rigid manipulators moving a flexible object in the prescribed trajectory while suppressing the vibration of the flexible object. Dynamic equations of the flexible object are derived using the Hamiltonian principle, which is expressed as a partial differential equation (PDE) with appropriate boundary conditions. Then, a combined dynamics is formulated by combining the manipulators and object dynamics without any approximation. The resulting dynamics are thus described by the PDEs, having rigid as well as flexible parameters coupled together. This paper attempts to develop a robust control scheme without approximating the PDE in order to avoid measurements of flexible coordinates and their time derivatives. For this purpose, the two subsystems, namely slow and fast subsystems, are identified by using the singular perturbation technique. Specific robust controllers for both the subsystems are developed. In general, usage of the singular perturbation technique necessitates exponential stability of both subsystems, which is evaluated by satisfying Tikhnov's theorem. Hence, the exponential stability analysis is performed for both subsystems. Focusing on two three-link manipulators holding a flexible beam, simulations are performed and simulation results demonstrate the versatility of the proposed robust composite control scheme.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3