Affiliation:
1. Department of Mechanical Engineering and Science, Kyoto University, Kyodai-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
Abstract
Abstract
This paper focuses on grasping and manipulation of an object by two one-link flexible arms. By taking rolling constraints between the arm tip and the grasped object, the arms have the potential to grasp and manipulate an object at the same time. To realize grasping and manipulation by two flexible arms, a boundary controller is derived from a Lyapunov functional related to the total energy of a dynamic model described by a hybrid partial differential equation-ordinary differential equation (PDE-ODE) model. The derived controller consists of the bending moment at the root of the arm, the rotational angle, and the angular velocity of the motor. In particular, the controller does not need the feedback of the information of the grasped object, and thus, it is easy to implement the controller. Further, it is shown that the derived controller realizes stable grasping and orientation control of the object as well as vibration control of the arms. Finally, experiments and numerical simulations are conducted to investigate the validity of the derived boundary controller.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献