Silver Nanoparticles Offer Effective Control of Pathogenic Bacteria in a Wide Range of Food Products

Author:

Dolores Avila-Quezada Graciela,Pavel Espino-Solis Gerardo

Abstract

According to the Food and Agriculture Organization (FAO), food wastage still causes massive economic loss. A major role in this loss is played by the activities of microbial organisms. Treatments such as heat and irradiation can reduce microorganisms in fruits and vegetables and hence reduce postharvest loss. However, some of these treatments can injure the fruit. Effective chemical treatments against bacterial infestations can result in resistance. A more recent method is the use of silver nanoparticles. These can act in a number of ways including at cellular level by inhibiting the cell wall synthesis, by binding to the surface of the cell membrane and by interposing between the DNA base pairs, and by inhibiting biofilm formation, affecting the thiol group of enzymes, affecting bacterial peptides and hence interfering with cell signaling and attaching to the 30S ribosome subunit. A ground-breaking way to survey the effects of the silver nanoparticles on bacterial populations is by flow cytometry. It allows measurement of many characteristics of single cells, including their functional characteristics such as viability and cell cycle. Bacterial viability assays are used with great efficiency to evaluate antibacterial activity by evaluating the physical rupture of the membrane of the bacteria.

Publisher

IntechOpen

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3