Resistive Switching and Hysteresis Phenomena at Nanoscale

Author:

Raja Vithaldas,Mohan Thamankar Ramesh

Abstract

Resistive switching at the nanoscale is at the heart of the memristor devices technology. These switching devices have emerged as alternative candidates for the existing memory and data storage technologies. Memristors are also considered to be the fourth pillar of classical electronics; extensive research has been carried out for over three decades to understand the physical processes in these devices. Due to their robust characteristics, resistive switching memory devices have been proposed for neuromorphic computation, in-memory computation, and on-chip data storage. In this chapter, the effects of various external stimuli on the characteristics of resistive switching devices are comprehensively reviewed. The emphasis will be given on 2-dimensional (2D) materials, which are exciting systems owing to superior electrical characteristics combined with their high stability at room temperature. These atomically thin 2D materials possess unique electrical, optical and mechanical properties in a broad spectrum, and open the opportunity for developing novel and more efficient electronic devices. Additionally, resistive switching due to light has also grabbed the attention of optoelectronic engineers and scientists for the advancement of optical switches and photo tuned memristors. The variety of material systems used in the fabrication of memristors is comprehensively discussed.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3