Physiological and Biochemical Basis of Stress Tolerance in Soybean

Author:

Mannan Md.,Rima Ismot,Karim Abdul

Abstract

Soybean is considered as a species sensitive to several abiotic stresses, such as drought, salinity, and waterlogging, when compared with other legumes, and these abiotic stresses have a negative effect on soybean plants’ growth and crop productivity. Clearing the conception on the physiological and biochemical responses to drought is essential for an overall understanding of the mechanism of plant resistance to water-restricted conditions and for developing drought resistance screening techniques that can be used for plant breeding. Plants can adapt in response to water scarcity situations by altering cell metabolism and activating various defense mechanisms. Higher salt tolerance in resistant soybean genotypes was associated with better water relation, salt dilution by juiciness, and better osmotic adaptation with an accumulation of more amino acids, sugars, and proline. In addition, less damaging chlorophylls, higher photosynthetic efficiency and cell membrane stability, and higher calcium content contributed to the higher salt tolerance of soybean genotypes. Plants adapted to flooded conditions have mechanisms to cope with this stress. Aerenchyma formation increased availability of soluble carbohydrates, greater activity of glycolytic pathways and fermenting enzymes, and involvement of antioxidant defense mechanisms to cope with post-hypoxic/post-anoxic oxidative stress. Ethylene, a gaseous plant hormone, plays an important role in altering a plant’s response to oxygen deficiency.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3