Novel Physical Modelling under Multiple Dimensionless Numbers Similitudes for Precise Representation of Molten Metal Flow

Author:

Tsukaguchi Yuichi,Fujita Kodai,Murakami Hideki,I.L. Guthrie Roderick

Abstract

Physical model experiments, together with numerical model calculations, are essential for scientific investigations such as molten metal flow in casting processes. Considering the physical modelling of flow phenomena, a common method is used to construct a physical model with a reduced scale ratio and then, experiment is carried out under one or two dimensionless number(s) similitude(s). It is an ideal condition of the experiment to establish the simultaneous similitude of multiple dimensionless numbers (SMDN) concerned with the objective flow phenomena but was considered difficult or impossible to realize in practice. This chapter presents a breakthrough in this matter. A simple relationship between the physical properties of fluids and the scale ratio of the physical model is clearly expressed for the simultaneous similitude of the Froude, Reynolds, Weber, Galilei, capillary, Eötvös and Morton numbers. For establishing the physical modelling to represent molten Fe flow phenomena under the SMDN condition, the physical properties of some molten metals can be demonstrated to meet the required relationships. Furthermore, this novel concept is also applicable for other combinations of molten metals. Precise, safe, and easy physical model experiments will be conducted under the SMDN condition that exactly mimics industrial casting operations in higher-temperature systems.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3