Abstract
This paper reviews the current state of the art in the application of electromagnetic forces to control fluid flow to improve quality in continuous casting of steel slabs. Many product defects are controlled by flow-related phenomena in the mold region, such as slag entrapment due to excessive surface velocity and level fluctuations, meniscus hook defects due to insufficient transport of flow and superheat to the meniscus region, and particle entrapment into the solidification front, which depends on transverse flow across the dendritic interface. Fluid flow also affects heat transfer, solidification, and solute transport, which greatly affect grain structure and internal quality of final steel products. Various electromagnetic systems can affect flow, including static magnetic fields and traveling fields which actively accelerate, slow down, or stir the flow in the mold or strand regions. Optimal electromagnetic effects to control flow depends greatly on the caster geometry and other operating conditions. Previous works on how to operate electromagnetic systems to reduce defects are discussed based on results from plant experiments, validated computational models, and lab scale model experiments.
Funder
National Science Foundation
Subject
General Materials Science,Metals and Alloys
Reference147 articles.
1. Table 4. Production of Continuously Cast Steel,2018
2. Chapter 14. Fluid Flow in the Mold;Thomas,2003
3. Chapter 15. Continuous Casting of Steel;Thomas,2001
4. Modeling of Continuous Casting Defects Related to Mold Fluid Flow;Thomas;Iron Steel Technol.,2006
5. Numerical study of steady turbulent flow through bifurcated nozzles in continuous casting
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献