Physical Modelling of Aluminum Refining Process Conducted in Batch Reactor with Rotary Impeller

Author:

Saternus Mariola,Merder Tomasz

Abstract

The refining process is one of the essential stages of aluminum production. Its main aim is to remove hydrogen, that causes porosity and weakens the mechanical and physical properties of casting aluminum. The process is mainly conducted by purging inert gas through the liquid metal, using rotary impellers. The geometry of the impellers and the processing parameters, such as flow rate of gas and rotary impeller speed, influence the gas dispersion level, and therefore the efficiency of the process. Improving the process, and optimization of parameters, can be done by physical modelling. In this paper, the research was carried out with the use of a water model of batch reactor, testing three different rotary impellers. Varied methods were used: visualization, which can help to evaluate the level of dispersion of gas bubbles in liquid metal; determination of residence time distribution (RTD) curves, which was obtained by measuring the conductivity of NaCl tracer in the fluid; and indirect studies, completed by measuring the content of dissolved oxygen in water to simulate hydrogen desorption. The research was carried out for different processing parameters, such as flow rate of refining gas (5–25 L·min−1) and rotary impeller speed (3.33–8.33 s−1). The obtained results were presented graphically and discussed in detail.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference37 articles.

1. Physical model of aluminium refining process in URC-7000;Saternus;Metalurgija,2009

2. A survey of inclusions in aluminium;Simensen;Aluminium,1980

3. Physical Modeling of Fluid Flow in Ladles of Aluminum Equipped with Impeller and Gas Purging For Degassing

4. Removal of Impurity Elements from Molten Aluminum: A Review

5. Molten metal fluxing/treatment: How best achieve the desired quality requirements;Taylor;Aluminium,2003

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3