Author:
Saternus Mariola,Merder Tomasz
Abstract
The refining process is one of the essential stages of aluminum production. Its main aim is to remove hydrogen, that causes porosity and weakens the mechanical and physical properties of casting aluminum. The process is mainly conducted by purging inert gas through the liquid metal, using rotary impellers. The geometry of the impellers and the processing parameters, such as flow rate of gas and rotary impeller speed, influence the gas dispersion level, and therefore the efficiency of the process. Improving the process, and optimization of parameters, can be done by physical modelling. In this paper, the research was carried out with the use of a water model of batch reactor, testing three different rotary impellers. Varied methods were used: visualization, which can help to evaluate the level of dispersion of gas bubbles in liquid metal; determination of residence time distribution (RTD) curves, which was obtained by measuring the conductivity of NaCl tracer in the fluid; and indirect studies, completed by measuring the content of dissolved oxygen in water to simulate hydrogen desorption. The research was carried out for different processing parameters, such as flow rate of refining gas (5–25 L·min−1) and rotary impeller speed (3.33–8.33 s−1). The obtained results were presented graphically and discussed in detail.
Subject
General Materials Science,Metals and Alloys
Reference37 articles.
1. Physical model of aluminium refining process in URC-7000;Saternus;Metalurgija,2009
2. A survey of inclusions in aluminium;Simensen;Aluminium,1980
3. Physical Modeling of Fluid Flow in Ladles of Aluminum Equipped with Impeller and Gas Purging For Degassing
4. Removal of Impurity Elements from Molten Aluminum: A Review
5. Molten metal fluxing/treatment: How best achieve the desired quality requirements;Taylor;Aluminium,2003
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献