A Region-Specific Hybrid Sampling Method for Optimal Path Planning

Author:

Zhong Chengcheng1,Liu Hong1

Affiliation:

1. Key Laboratory of Machine Perception (Ministry of Education), Shenzhen Graduate School, Peking University, China

Abstract

Finding high quality paths within a limited time in configuration space is a challenging issue for path planning. Recently, an asymptotically optimal method called fast marching tree (FMT*) has been proposed. This method converges significantly faster than its state-of-the-art counterparts when addressing a wide range of problems. However, FMT* appears unable to solve the narrow passage problem in optimal path planning, since it is based on uniform sampling. Aiming at solving this problem, a novel region-based sampling method integrating global scenario information and local region information is proposed in this paper. First, global information related to configuration space is extracted from an initial sample set obtained via hybrid sampling. Then, local regions are constructed and local region information is captured to make intelligent decisions regarding regions that are difficult and need to be boosted. Finally, the initial sample set is sent to FMT* using a modified locally optimal one-step connection strategy in order to find an initial and feasible solution. If no solution is found and time permits, the guided hybrid sampling will be adopted in order to add more useful samples to the sample set until a solution is found or the time for doing so runs out. Simulation results for six benchmark scenarios validate that our method can achieve significantly better results than other state-of-the-art methods when applied in challenging scenarios with narrow passages.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3