Collision-Free Path Planning Method for Robots Based on an Improved Rapidly-Exploring Random Tree Algorithm

Author:

Wang Xinda,Luo XiaoORCID,Han Baoling,Chen YuhanORCID,Liang Guanhao,Zheng Kailin

Abstract

Sampling-based methods are popular in the motion planning of robots, especially in high-dimensional spaces. Among the many such methods, the Rapidly-exploring Random Tree (RRT) algorithm has been widely used in multi-degree-of-freedom manipulators and has yielded good results. However, existing RRT planners have low exploration efficiency and slow convergence speed and have been unable to meet the requirements of the intelligence level in the Industry 4.0 mode. To solve these problems, a general autonomous path planning algorithm of Node Control (NC-RRT) is proposed in this paper based on the architecture of the RRT algorithm. Firstly, a method of gradually changing the sampling area is proposed to guide exploration, thereby effectively improving the search speed. In addition, the node control mechanism is introduced to constrain the extended nodes of the tree and thus reduce the extension of invalid nodes and extract boundary nodes (or near-boundary nodes). By changing the value of the node control factor, the random tree is prevented from falling into a so-called “local trap” phenomenon, and boundary nodes are selected as extended nodes. The proposed algorithm is simulated in different environments. Results reveal that the algorithm greatly reduces the invalid exploration in the configuration space and significantly improves planning efficiency. In addition, because this method can efficiently use boundary nodes, it has a stronger applicability to narrow environments compared with existing RRT algorithms and can effectively improve the success rate of exploration.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. A Random Sampling Scheme for Path Planning

2. On the Probabilistic Foundations of Probabilistic Roadmap Planning

3. Randomized Kinodynamic Planning

4. Rapidly-exploring random trees: A new tool for path planning;LaValle;Comput. Sci. Dept. Oct.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3