Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning

Author:

Zhang Houxiang1,Zhang Jianwei1,Liu Rong2,Zong Guanghua2

Affiliation:

1. TAMS, Department of Informatics, University of Hamburg, Hamburg, Germany

2. Robotics Institute, Beihang University, Beijing, China

Abstract

This paper presents an auto-climbing robot for cleaning the elliptic half-shell of National Grand Theatre in China. The robot consists of a climbing mechanism, a moving mechanism, two cleaning brushes and supporting mechanisms. The mechanism and unique aspects are presented in detail. A distributed control system based on CAN bus is designed to meet the requirements of controlling the robot. After that the emphasis for discussion is on the motion realization which includes climbing and cleaning movements. The robot independently climbs and descends in the vertical direction and cleans in the horizontal direction. It takes the circling tracks as supports for climbing up and down between strips and moving horizontally along one strip around the ellipsoid. For system design and control purposes, the dynamic models of the climbing and cleaning processes are given applying of the Lagrange equation. Furthermore the force distribution of the front and rear supporting mechanisms is computed in a way that ensures the safety of the climbing process. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Façade operation robot on convex surface using an embedded rope ascender;Automation in Construction;2024-03

2. Design of a Five DOF Contactless Robot for Facade Inspection;State-of-the-Art and Innovations in Mechanism and Machine Science;2023-12-15

3. Robot de cables para la limpieza de fachadas;Revista Iberoamericana de Automática e Informática industrial;2023-02-01

4. Mobile robot for monitoring park trees: Design and modeling;FME Transactions;2023

5. A Robot for Facade Cleaning Based on a Cartesian Configuration: Kinematic Analysis and Prototype Construction;Advances in Service and Industrial Robotics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3