Effects of abiotic stresses on sorbitol biosynthesis and metabolism in tomato (Solanum lycopersicum)

Author:

Almaghamsi Afaf,Nosarzewski Marta,Kanayama Yoshinori,Archbold Douglas D.ORCID

Abstract

Polyols such as sorbitol and ribitol are a class of compatible solutes in plants that may play roles in tolerance to abiotic stresses. This study investigated the effects of water stress on sorbitol biosynthesis and metabolism and sorbitol and ribitol accumulation in tomato (Solanum lycopersicum L.). Water stress induced by withholding water and by using polyethylene glycol as a root incubation solution to mimic water stress, and NaCl stress were applied to wild-type (WT) and three genetically-modified lines of tomato (cv. Ailsa Craig), a control vector line TR22, and 2 sorbitol dehydrogenase (sdh) antisense lines TR45 and TR49. Sorbitol and ribitol content, as well as the enzymatic activities, protein accumulation, and gene expression patterns of the key sorbitol cycle enzymes aldose-6-phosphate reductase (A6PR), aldose reductase (AR), and sorbitol dehydrogenase (SDH), were measured in mature leaves. In response to the stresses, both sorbitol and ribitol accumulated in leaf tissue, most significantly in the sdh antisense lines. A6PR, characterised for the first time in this work, and AR both exhibited increased enzymatic activity correlated with sorbitol accumulation during the stress treatments, with SDH also increasing in WT and TR22 to metabolise sorbitol, reducing the content to control levels within 3 days after re-watering. In the sdh antisense lines, the lack of significant SDH activity resulted in the increased sorbitol and ribitol content above WT levels. The results highlighted a role for both A6PR and AR in biosynthesis of sorbitol in tomato where the high activity of both enzymes was associated with sorbitol accumulation. Although both A6PR and AR are aldo-keto reductases and use NADPH as a co-factor, the AR-specific inhibitor sorbinil inhibited AR only indicating that they are different enzymes. The determination that sorbitol, and perhaps ribitol as well, plays a role in abiotic responses in tomato provides a cornerstone for future studies examining how they impact tomato tolerance to abiotic stresses, and if their alteration could improve stress tolerance.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3