Liquid in vitro culture system allows gradual intensification of osmotic stress in Solanum tuberosum through sorbitol

Author:

Wellpott KatharinaORCID,Herde MarcoORCID,Winkelmann TraudORCID,Bündig ChristinORCID

Abstract

Abstract Because of their shallow root system, drought stress is a major problem in potato cultivation. Due to climate change more severe drought periods are expected to occur in the vegetative growth phase of potato growth. Therefore, there is a great need for drought tolerant potato genotypes. Potato responds to drought stress in the field in various ways, including osmoregulation. Osmotic stress can be induced in vitro by adding an osmotic agent and thus lowering the osmotic potential of the medium. In this study, a new, cost-effective in vitro test system is presented, in which the osmotic agent can be gradually added after root formation to prevent an osmotic shock. This is achieved by using sieves as plant holders and liquid medium, which, allows an improved simulation of gradually drying soil. Responses to osmotic stress in four potato genotypes were analysed and an increase in proline under osmotic stress was detected. Moreover, genes of interest that were postulated to be linked to drought stress were shown by quantitative qRT-PCR to be regulated under osmotic stress. Furthermore, we showed that the content of sorbitol, which was used as osmotic agent, was 700- fold higher for ‘Eurostarch’ after seven days under osmotic stress and 1093- fold higher after 14 days, respectively, compared to control plants without sorbitol addition. Therefore, further investigations must show, whether it was taken up through the roots, is metabolised, stored or de novo synthesised by the potato plants. Keypoints The established novel in vitro test system for potato allows gradually increasing stress exposition of rooted plants. Sorbitol seems not an ideal osmotic agent as it is likely taken up.

Funder

Bundesministerium für Ernährung und Landwirtschaft - Fachagentur Nachwachsende Rohstoffe

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3