Chemical analysis and origin of the smell of line-dried laundry

Author:

Pugliese Silvia,Jespersen Malte Frydenlund,Pernov Jakob Boyd,Shenolikar Justin,Nygaard Jesper,Nielsen Ole JohnORCID,Johnson Matthew S.ORCID

Abstract

Environmental contextThe fresh pleasant smell of laundry dried outside in sunlight is recognised by most people, but despite decades of speculation the origin of the smell has not been demonstrated. We show that the smell of line-dried laundry is due to the unique combination of traces of atmospheric hydrocarbons, sunlight and a wet fabric surface. This surface photochemistry is likely to be widespread in the environment on surfaces of natural materials. AbstractIn this study, we find that the drying method is the key element in generating the well-known fresh scent of line-dried laundry, which we argue demonstrates that it is the result of physical and chemical processes occurring on the surface of the fabric. Cotton towels were rinsed with Milli-Q water and dried outdoors, indoors, and outdoors but not exposed to sunlight. The dried towels were placed in sealed Tedlar bags, and the emitted compounds were analysed by using thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) to yield qualitative gas chromatograms and mass spectra. We observed a variety of C5 to C9 oxidised carbon compounds (e.g. aldehydes such as pentanal, hexanal, heptanal, octanal, and nonanal) when the towels were dried outside. These compounds are not observed in the other conditions. Many of these compounds have smells that are subjectively found to be pleasant. The experiments indicate that both UV light and the presence of liquid water are necessary to generate the products. The polar nature of the oxidised compounds may explain why the smell of fresh laundry is relatively long-lasting because hydrogen bonds can form between these compounds and cotton fibres. We therefore propose that oxidative photochemistry on the surface of the drying laundry is responsible for the production of the fresh smell.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3