Tobacco and Hot Pot Odor Adsorbed by Cotton, Wool, and Polyester Fabrics: Desorption Components and Dynamic Analysis

Author:

Huang Wenjuan12,Liang Shuaitong12,Zhang Hongjuan12,Ding Xuemei3,Wang Jiping12

Affiliation:

1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China

2. Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai University of Engineering Science, Shanghai, China

3. College of Fashion and Design, Donghua University, Shanghai, China

Abstract

Fibrous textiles readily absorb and desorb ambient odors. However, information on the composition and dynamic analysis of tobacco smoke and hot pot odors on fabrics during desorption is limited. This study used gas chromatography–mass spectrometry to analyze the desorption components of cotton, wool, and polyester fabrics exposed to these two odors, respectively. Then, a dynamic diffusion fabric structure model demonstrated the effect of airflow velocity and fabric porosity on nicotine desorption. Furthermore, we proposed mass diffusion coefficients with different molecular weights. The results showed that cotton fabrics with tobacco smoke released many low molecular weight compounds, while with wool fabrics significantly fewer compounds were detected than for the other two fabrics. Notably, 3-ethenylpyridine, a marker of tobacco smoke, was not detected in wool fabrics. For hot pot odor, cotton fabrics released more hexanal, nonanal, and anethole than wool and polyester, while wool fabrics released many β-pinenes. The numerical results of the dynamic model showed that the air inlet velocity significantly affects the nicotine concentration in the fabric. Meanwhile, the concentration of nicotine in fabrics with lower porosity decreased faster. A lower mass diffusion coefficient will cause odors to remain in the fabric. This study aimed at the composition and the dynamics of odor in fabrics and offers essential information and simple models for reducing unnecessary washing of textiles and odor resistance textile design.

Funder

Key Research and Development Program of Xinjiang Production and Construction Corps

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3